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Conventional procedures for the synthesis of counters

apply only to synchronous designs. A synthesis method is

presented which provides a complete description of the

logical operation of both synchronous and asynchronous

counters.

The logical operation of a flip-flop is characterized

in terms of state transitions.

A convention is defined for representing the logical

action of a flip-flop on a map.

A standard form of problem statement is given, and

rules for translating the synthesis problem into transition

map form are presented.

Input equation derivation rules and input equation

requirements are defined.

The asynchronous synthesis procedure is formally

defined, and a detailed example of its application is given. }_
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I INTRODUCTION TO TRANSITION MAPS

Historical Background

The concept of using a modified form of Venn diagram

as a means of simplifying Boolean expressions was first

proposed by E. W. Veitch [I] in 19_2. The following

year M. Karnaugh [2] introduced the change in the organi-

zation of Veitch charts which resulted in the present form

of maps.

The map method of simplification presented by Karnaugh

has proved to be extremely valuable for the synthesis of

combinational logic because it provides insight into the

structure of a Boolean expression. The introduction of

additional notation in 1961 by H. W. Mergler [3] and

independently by M. P. Marcus [4] in !962 resulted in the

ability of maps to provide insight into the structure of

sequential circuits. In the transition map scheme presented

by Mergler, not only the relationships between the entries

on the map for each individual flip-flop, but also the

relationships between entries on the maps for different



flip-flops are utilized. This added dimension provides the

information necessary for the synthesis of asynchronous

counters in which each fUp-flop makes at most one

transition between stable states of the counter. In the

transition map method described here, a dimension corres-

ponding to time is added in order to enable the synthesis

of asynchronous counters in which the flip-flops may make

more than one transition between stable states of the counter.



Flip-Flop Logical Operations

The type of flip-flop to be considered, commonly

referred to as an R-S-T flip-flop, is shown symbolically

in Figure 1.

The flip-flop has four outputs -- two pulse outputs

and two level outputs. The two level outputs, q and _,

define the state of flip-flop Q at all times except tran-

sient periods. When q = 1, the flip-flop is said to be in

the ONE state. When q = 0, it is said that the flip-flop

is in the ZERO state. The two level outputs always assume

complementary values -- whenever q = 0, then _ = 1; and

whenever q = 1, then q = 0.

The two pulse outputs, aQ and _Q, define the state,-of-

transition of flip-flop O at all times. An a transition is

defined to be the change in state of a flip-flop that occurs

as the flip-flop goes from the ZERO state to the ONE

state. When aQ = I, the level output q changes from

= 1 to _ = 0, and flip-flop Qis said to make ana

transition. A _ transition is defined to be the change

in state of a flip-flop that occurs as the flip-flop changes

from the ONE state to the ZERO state. When _Q = I, the
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Figure 1. R-S-T Flip-Flop.



level output q changes from q -- 1 to q = O, and flip-flop

Q is said to make a _ transition. The two pulse outputs

have the following characteristics: Two pulses are never

present simultaneously -- whenever aQ = l, then _Q = O;

and whenever _Q = l, then aQ = O. Two pulses never

appear successively at the same output without an inter-

venient pulse at the opposite output. If neither pulse is

present -- aQ = 0 and _Q = 0 -- the state of the flip-

flop is defined by the two level outputs, q and q.

The R-S-T flip-flop has three inputs -- a RESET, a

SET, and a TRIGGER input; denoted by "R, " ItS, It and 'IT, "

respectively. The inputs control the logical operation of the

flip-flop in the following manner:

If flip-flop Q is in the ZERO state, a pulse at the

SET input will cause Q to make an a transition -- aQ = 1.

If the flip-flop is in the ONE state and a pulse appears

at the SET input, the state of the flip-flop will not

change.

When the flip-flop is in the ZERO state, a pulse at

the RESET input has no effect on its state. When flip-

Flop Q is in the ONE state, a pulse at the RESET input



6

forces the flip-flop to make a _ transition -- _Q = i.

If flip-flop Q is in the ZERO state and the TRIGGER

input is pulsed, the flip-flop will make an a transition

-- aQ - I. If Q is in the ONE state and the TRIGGER

input is pulsed, Q will make a _ transition --_Q = I.

If the SET and TRIGGER inputs are pulsed simultan-

eously when the flip-flop is in the ZERO state, the effect

will be the same as that of pulsing either input alone,

and the flip-flop will make an a transition. If the

flip-flop is in the ONE state and both the SET and TRIGGER

inputs receive signals at the same time, the action of the

flip-flop will be indeterminate.

When the TRIGGER and RESET inputs are pulsed simul-

taneously, and the flip-flop is in the ONE state; the result

is the same as the result of pulsing either input alone,

that is, the flip-flop makes a _ transition. If the flip-

flop is in the'ZERO state when both the TRIGGER and RESET

receive pulses, the action of the flip-flop will be indeter-

minate.

If the SET and RESET inputs or all three inputs are

pulsed simultaneously, the action of the flip-flop will be
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indeterminate.

The R-S-T flip-flop as a physical device has certain

inherent delays and restrictions. There is a finite time

lapse between the arrival of an input pulse and the reflec-

tion of its effect at the output. Consecutive input signals

must be sufficiently spaced in time in order for the flip-

flop to properly respond. Both of these points will be taken

into consideration in arriving at a practical design.

T ransition Maps

A transition map is a precise description of the logical

action of a given flip-flop under a particular set of cir-

cunstances. Transition maps are presented in the format

of Karnaugh maps. Each square of a transition map repre-

sents an initial set of flip-flop states, and each map is

uniquely associated with a particular flip-flop.

Entries on the maps describe the action of the asso-

ciated flip-flop for each initial combination of flip-flop

states according to the following convention:

If, for an initial combination of flip-flop

states, the associated flip-flop does not receive an
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inpuL pulse, the square is left blank.

If an input causes the flip-flop to make an a

transition, the entry is an "a." From the defini-

tion of an a transition, an "a" can only be entered

on the half of the map for which the initial state of

the associated flip-flop is ZERO.

If the flip-flop associated with the map is

initiaUy in the ZERO state, and if an input pulse

causes the flip-flop to remain in the ZERO state; the

map entry is a "0. ,I

If the result of an input pulse is a _ transi-

tion, the map entry is a "6. H By definition, a "_"

can only be entered on the half of the map for which

the associated Nip-flop is initially in the ONE state.

If the associated flip-flop is initially in the

ONE state, and if an input ....Io_._ reo,,If_.......... _ t_e flin-.

flop remaining in the ONE state; the entry is a "I."

If a particular initial set of flip-flop states

does not occur, or if the action of the associated

flip-flop is indeterminate for a particular initial



combination of states, the entry is a "-. "

Transition maps can be used in two ways. _'he first

is in the determination of the logical action of a flip-flop

when its input equation set is given. Using the convention

defined above and the definition of RESET, SET, and

TRIGGER inputs; a single-variable transition map can

be derived for each of the followlng input equation sets:

IRo:° SG SG P

T G TQ 0

RQ=O t

SQ 0

TQ p

In these equations and throughout the following, a lower-

case "p" is used to denote a pulse source. The transi-

tion maps corresponding to these equations sets are shown

in Figure Z. The convention is adopted that if an input

is equal to "0" -- that is, if an input does not receive

a pulse -- the equation is simply omitted from the equation

set.

In each of the three sets of input equations above,

only one input receives a signal. Single variable transi-

tion maps can also be derived for each of the three com-

binations of two simultaneous input pulses and for the
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Figure 2. Single-variable transition maps

derived from input equations for flip-flop Q.
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case of three simultaneous signals:

RQ p

SQ=p

TQ=p

The transition maps corresponding to these equation sets

follow directly from the descriptions given previously.

Figure 2 displays these maps.

The second manner in which transition maps are used

is in the derivation of input equations when the logical

action of a flip-flop is specified. In contrast to the

previous problem, the determination of the logical action

of a flip-flop from its input equation set, the problem of

deriving a set of input equations from a given transition

map does not necessarily have a unique solution.

Consider the following transition map:

q

°DFlip-Flop Q: !
1

By the previously defined convention for map entries,

this map indicates that when flip-flop Q is initially in
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the ZERO state, it receives an input pulse which causes

it to make an a transition. When flip-flop 0 is initially

in the ONE state, it does not receive any input signal. An

examination of Figure Z shows that an "a" may be entered

on a map as a result of either a SET input or a TRIGGER

input or both -- the input equation is not uniquely deter-

mined. Because the q = 1 square of the above map is blank,

the input signal which produces the a transition when flip-

flop Q is in the ZERO state must be inhibited when Q is in

the ONE state. Thus, the input equation corresponding to

the above transition map is SQ = "_.p or T O = q-p or both.

These three are equivalent to each other in that each wiU

produce the logical action defined by the transition map.

The following transition map indicates that when

the associated flip-flop is initially in the ZERO state,

it does not receive an input signal. When the flip-flop

and remains in the ONE state.

Flip-Flop 0:

q
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Reference to Figure ? shows that a 'tltt may be entered

on a map only when the input is a SET pulse. In order

that the flip-flop associated with this map not receive

an input pulse when it is in the ZERO state, the input

pulse is inhibited when q = 0 -- SQ = q.p.

The input equations corresponding to the map entries

"a" and tIl" have been derived. These correspondences

and those for tt_. and ,0" are i11ustrated in Figure 3.
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q

0

I

q

0

1

{

RQ= q.p

O1"

TQ= q. p

or

RQ= q. :}
TQ= q.

SQ= q.p

or

TQ= q'p

or

{ -}SQ= q.p

TQ= q.p

q

0

!

0

1

RQ= q.p SQ= q.p

Figure 3. Input equations derived

from transition maps for a flip-flop Q.



I1. THE SYNTHESIS OF SYNCHRONOUS COUNTERS

Introduction

In the preceding chapter, the description of the

logical operation of the R-S-T flip-flop was translated

into transition map representation, and the results were

shown in Figure 2. Using these results as a basis, input

equations corresponding to the map entries 'la, ,i I_1

B_I," and H0, ft were determined. The correspondences were

illustrated in Figure 3. The relationships displayed in

Figure Z and 3 form the basis for the transition map syn-

thesis technique. In this chapter, the concepts of deter-

mining transition maps 'from input equations and vice versa

will be generalized to include the case of multivariable

maps. This augmented "^-_-_ .... ._,_11_o_ k_ _ppl_ tn

some illustrative examples.

Problem Statement and Translation

In the counter synthesis problems which will be considered,

]5
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the problem statement will be in the form of a specified

sequence of counter states. Table 1 specifies a state

sequence for a counter with two flip-flops.

The problem statement is translated from the counter

state sequence table into transition map form by use of the

following rules:

1. Draw and label one transition map for each flip-

flop required for the counter. Each map must

display all possible states of the counter.

2. Determine which of the possible counter states,

if any, do not occur in the sequence. For each

such state, enter a "-_ in the corresponding

square on every map.

3. For each counter state in the sequence, determine

which type of transition, if any, each flip-flop

makes when the counter goes into the next state

in the sequence. Enter these transitions on the

maps. Do not make "0" or 'fl" entries.

As an example of the application of the rules above,

consider the sequence in Table 1. Rule 1 requires that two

two-variable m_ps be drawn and labeled. Rule 2 states
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TABLE 1

SEQUENCE OF COUNTER STATES

A B

0 0

0 1

1 1

0 0
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that any redundancies are to be entered on the maps. Since

there are four possible states for a two bit counter, and

since there are only three different states listed in the

sequence, there is one redundant state. Rule 3 requires

that each state in the sequence be i_aspected. When the

counter goes from its initial state of 00 to the 01 state,

flip-flop B makes an a transition. Thus, an "a" is

entered in the 00 square on the map for flip'flop B.

Because flip-Flop A does not make a transition at this

time, the 00 square on the map for flip-flop A is left

blank. At the next input pulse, the counter goes from the

01 state into the 11 state. Now A makes an a transition,

and B remains in the ONE state. Thus, an "a" is entered

in the 01 square on the map for A, and the 01 square on

the map for B is left blank. When the counter receives

a third input pulse, it returns to the 00 state. Both

fiip-_'1ops make _ transitions; therefore, a p i_ enLereu

in the 11 square on both maps.

in Figure 4.

Assumed Form of Combinational Circuitry

In the synthesis examples which are to follow, various

The completed maps are shown
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Flip- Flop A:

b

0 1
a

0 (1

Flip-Flop B:

b

0 1

(1

Figure 4. Result of application of

translation rules to sequence in Table I.
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logical elements will be used in addition to the R-S-T

flip-flop.

In forming logical functions of the flip-flop out-

put levels, the AND-OR-NOT system will be used. It will

be assumed that the propagation tirr:.es a_soctated with

these three elements are negligible compared to the delays

inherent in the R-S-T flip-flop. This assumption implies

that pulses from a given source will reach their destinations

at essentially the same time, regardless of the difference

in the number of gates in each path. In this way, the advan-

tages of being able to pulse more than one input to a flip-

flop at a time can be fully exploited without requiring

that the number of levels of gating be the same for inputs

which are to receive simultaneous pulses.

Two pulse logic elements, a PULSE-AND gate and a

PULSE-OR gate will be used in the implementation of flip-

flop input equations. Symbolically, no differentiation

will be made between PULSE-OR and OR gates, although in

practice, different circuits might be used. The propaga-

tion time of the PULSE-OR will be assumed negligible.

The PULSE-AND gate will have the following character-

istics. The element will have one pulse input and at least
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one level input. The output will be in pulse form, and

there will be negligible delay between input pulse and

output signal. A pulse at the input will cause a pulse to

appear at the output if and only if all the level inputs

have the truth value ONE at the instant the pulse first

appears at the input. The output of the PULSE-AND gate

will be based upon the truth values of the level inputs

at the instant of arrival of the input pulse, and changes

in these levels which occur after this instant will not

affect the output even though the input pulse may still

be present.

In addition to the various logic gates, use will be

made of a pulse delay element. The output will consist

of a single pulse emitted after a delay of 7 from the

time of arrival of the input pulse.

The symbolic representation of the various elements

noted =_,,v_-1".... is pre °o,,+=_...___n___Figure 5.

The fact that minimal forms of input gating will

be investigated for only one particular set of logical

connectives, the AND-OR-NOT system, is not a restriction

in the generality of the approach. It has been shown by
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AND Gate

OR Gate or PULSE-OR Gate

Pulse Input

Level Inputs

PULSE-AND Gate

INVER TER DELAY

Figure 5. Symbolic representation

of the combinational circuitry.
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Earle [ 5] that "in going from the canonical form of a func-

tion using one set of operators, to a minimal form of the

function with another set of operators, . .. minimizing

and then transforming gives the same result as transform-

ing and then minimizing. "

Derivation of Input Equations

In the translation of the problem statement into

transition map form, "0 '1 and "I 't entries are not made on

the maps. This convention has been adopted in order that

the maps display (in addition to the "-" entries) only

those entries which denote a change in state, because

it is only the transitions which must be accounted for in

the input equations in order that the proper sequence of

states result. For minimal forms of input equations, '_0"

and "1" entries should be made on the maps only when they

contribute to the simplification of the input equations.

The relationships illustrated in Figure 3 and the

points discussed above form the basis of the rules for the

derivation of input equations:

A "0" may be entered in any blank square on the
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1
ZERO half of a map.

A VtlV' may be entered in any blank square on the

Z
ONE half of a map.

A blank square must correspond to an absence

of all input pulses.

Every 'va't must be taken into account by either

a SET pulse ot a TRIGGER pulse or both simultaneously.

Every ,l_,, must be taken into account by either

a RESET pulse or a TRIGGER pulse or both simultan-

eously.

Every "0" must be taken into account by a RESET

pulse.

Every "1" must be taken into account by a SET

pulse.

Any "-" may be used to simplify any input expres-

sion.

IThe "ZERO half of a map" is that portion of a tran-

sition map for which the initial state of the associated

flip-flop is ZERO.

2The "ONE half of a map" is the area including those

squares for which the associated flip-flop is initially in
the ONE state.
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As an example of the application of the rules above,

consider the transition maps shown in Figure 4. The counter

input pulse will be denoted by "p. "

On the transition map for flip-flop A, the 'fat' implies

that A must receive either a SET pulse or a TRIGGER pulse

or both when a = 0 and b = 1. The ,f_l, implies that either

the RESET input or the TRIGGER input or both must be pulsed

when a = 1 and b = 1. The simplest input expression satis-

fying both these requirements is T A = b.p. For this par-

ticular case, the "-" entry does not help simplify the

input equation.

The pattern of entries on the transition map for

flip-flop B is such that a number of alternative input

expressions exist. These alternatives and two possible

input sets for flip-flop A are illustrated in Figure 6.

One variation of the completed design is shown schema-

tically in Figure 7. The convention will be adopted that

flip-flop inputs and outputs which are not used in a design

are omitted from the diagram.

As a second example of the application of the syn-

thesis technique, a three bit counter will be designed.



Z6

A.

a

0

b

0 1

-0)
TA= b. p

A:

b

0 1
a

o G

RA= a. p

SA= a b.

B:

a

0

(
b

0 1

&

-)SB- b. p

RB= a.p

B.

B..

b

0 1
a

_'-TB: (a+b). p

b

0 1
a

o __

RB= a.p

SB= a.p

Figure 6. Derivation of some of the possible

input expressions for the counter defined in Table 1.
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1

P

A

Output

B

Figure 7. Completed design of the counter defined in Table 1.

TA-- b. p S B- _. p

RB-- a.p
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The binary equivalent to the first few terms in the

Fibonaccl series (see Table Z) will be used as the sequence

of counter states.

The desired sequence of states having been specified,

the problem statement is translated into transition map

form. The result of this translation is shown in Figure 8.

Once the synthesis problem is in transition map form,

the inputequation derivation rules are applied. The

application of these rules is illustrated in Figure 9.

After determining the simplest sets of input equa-

tions, the synthesis is complete (see Figure 10).
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TABLE Z

BINARY FIBONACCI SERIES

COUNTER

A B C

0 0 0

O O 1

O 1 0

O 1 1

1 0 1

0 0 0
I
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A!

c

ab 01__.

O0

01 a

11 -- --

lO-

B:

c

ab 0 1

O0 a

Ol _ _._._

11 -- --

10 --

C:

c

ab 0 1

oo _
01

11

1o -___A_

Figure 8. Result of application of translation rules

to sequence of states of the binary Fibonacci series counter.
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A:

c

ab 0_0_I__

00

01 _ SA= b c. p

-- RA= a. p
I0

--_ n

B:

ab
O0

01

11

10

C

0 1

..._10. I

t__ _
"_" "_" TB= ac.p

C:

c

ab 0

oo_
01 a

11 ....

RC= bc.p _

or

c

ab

oo _
ol _--_

11 ,_...._ _TC= b.p

SC= b. p

Figure 9. Derivation of input equations

for the binary Fibonacci series counter.
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III. THE SYNTHESIS OF ASYNCHRONOUS COUNTERS

Problem Statement and Assumptions

As was done in the previous chapter, it will be assumed

that the problem is stated in the form of a sequence of coun-

ter states to be implemented. It will also be assumed that

the circuitry which is to be connected to the counter output

will not be adversely affected by the temporary appearance

of unstable states during the transition of the counter

from one state in the sequence to the next -- a condition

which is a prerequisite for the practicality of an asyn-

chronous counter. A third assumption, which is implied

in the following technique, is that the time it takes for a

flip-flop to change state is small compared to the length

of time between counter input pulses. This condition ,,--lakes

it possible for the counter to go through a number of

unstable states between the specified states of the sequence.

In the examples which have been treated up to now and

in the problems which are to be presented, the state of the

33
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counter for which all flip-flops are in the ZERO state is

arbitrarily taken to be the starting state. This artifice

in no way limits the generality of the techniques presented.

Motivation for the Asynchronous Synthesis Procedure

Suppose it is desired to synthesizea three bit counter

which will count in the natural binary sequence (see Table 3).

The problem is easily solved by using the techniques presented

in the preceding chapter: the derivation of the input equa-

tions is illustrated in Figure 11, and the synchronous solu-

tion is shown schematically in Figure 12.

For the type of counter under consideration -- counters

which are intended to execute a specific sequence of states --

the logical action of each flip-flop at the arrival of a

counter input depends upon

initial state of the counter.

-- and is determined by -- the

In the counter designed above

A _ A_ZAU AAA OyLA_ZAA VLAVIJtO _V_AAb_ O AAA _V_LA_,_ _/, b_A_,, AAAI.,'I.,_,_, .L _ L,.a _ A_

mission of information about the state of the counter is

achieved by the use of flip-flop output levels. Flip-flop

A, for example, must make a transition when the counter is

initially in either the 011 or the 111 state. The information
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TABLE 3

THREE BIT NATURAL BINARY

COUNTER

A B C

0 0 0

0 0 1

0 1 0

0 1 1

I 0 0

1 0 1

1 1 0

1 1 1

0 0 0
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Figure 1I. Derivation of input equations

for the three bit natural binary counter.
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that the counter is in one of these states is transmitted to

the input of flip-flop A by means of the output levels b and c.

In the internal structure of a synchronous counter, the

flip-flop output levels serve as sources of information

about the state of the counter. An inspection of the tran-

sition maps in Figure 11, however, reveals that there is a

second source of information available. The transition map

for flip-flop C, for example, indicates that C makes a tran-

sition for every initial counter state. Thus, aC = 1 indi-

cates that the counter was initially in a state in which

c = 0; _C = 1 conveys the information that the counter

was initially in the 001, 011, 101, or 111 state. From

the transition map for flip-flop B, it follows that

(1) _B = 1 implies that the initial state of the counter

was either 001 or 101, (Z) _B = 1 indicates that the counter

was in either the 011 or the 111 state prior to the input

pulse. The transition map for flip-flop A shows that the

initial counter states 011 and 111 can be uniquely repre-

sented by a A = 1 and _A = 1, respectively.

There are essential differences between the two sources

of information described above. Information pertaining to
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the state of the counter is available from the flip-flop

output levels prior to the arrival of the counter input

pulse. In contrast, the flip-flop transition pulses appear

after the arrival of an input signal. In addition to this

temporal difference in the information, there is a variance

in the total amount of information available from each source.

Whereas the set of output levels of all flip-flops is

sufficient to distinguish between every state of the counter,

the transition pulses are inadequate in this respect. This

inadequacy, however, does not always significantly restrict

the use of transition pulses, as will be shown in the next

paragraph.

The information available at the pulse outputs of the

flip-flops is used in the following manner. Consider the

transitions enterd on the transition map for flip-flop B

in Figure 11. All four of these transitions are entered in

squares corresponding to the _ transitions of flip-flop C.

It follows that if the input equation were T B = _C' flip-

flop B would make the desired transitions. Now consider

the a and _ transitions of flip-flop A. These two transi-

tions are entered in squares corresponding to the two
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transitions of flip-flop B. Thus, the _ pulses of flip-flop

B can be used as the TRIGGER input pulses of flip-flop A.

Figure 13 displays the complete design.

In the counter design of Figure 13, flip-flop state

transitions are used as information sources and the corres-

ponding transition pulses are employed as the information

carriers. This is in contrast to the design of Figure 12,

in which flip-flop output levels serve as information sources

and gated counter input pulses serve as information carriers.

The lack of synchronism in the counter of Figure 13 is the

price that is paid for the simplicity of that counter com-

pared to the one in Figure 12. It is this lack of synchron-

ism, caused by the inherent delay at output of each flip-

flop, that gives rise to the term t'asynchronous. "

Consider the scale-of-six counter defined by Table 4.

The transition maps for this counter (see Figure 14) closely

resemble those for the three bit natural binary counter

(see Figure 11). It is therefore natural to investigate

the possibility of finding input equations similar to those

which resulted in the simple design of Figure 13.

Examine the map for flip-flop Z in Figure 14. According
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TABLE 4

SCALE-OF-SIX

COUNTER

X Y Z

O 0 0

0 0 1

0 1 0

0 1 1

1 1 0

1 1 1

0 0 0
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11 a _,

10 -'--

Figure 14. Transition maps for scale-of-six counter.
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to the rules for the derivation of input equations, the t,_.

entries may be used to simplify the input equation. Thus,

the simplest input expression for Z is T Z = p.

Now compare the map for flip-flop Y with the map for

flip-flop 7.. If there were a "_" in the 011 square of the

map for Y, then the _ transition pulses of Z could be used

as the TRIGGER input signal for Y. Moreover, an examina-

tion of the mapforX reveals that if this additional

transition were present on the map for Y, then the _ pulses

from Y could be used as the TRIGGER input pulses for X.

The conclusion is that it is very desirable (from the stand-

point of achieving a simple counter) for flip-flop Y to

make a _ transition when the counter is initially in the

011 state. If the counter is to execute the sequence of

states defined by Table 4, however, the effect of any such

additional _ transition must be compensated for by an addi-

tional __ tran__ition immediately following it. Clearly,

any gain in simplicity achieved by the expedient of adding

a _ transition must therefore be weighed against the loss

caused by having to account for the additional a transition.

There are two possible ways in which the additional a
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transition may be taken into account. First, the counter

input pulses which arrives when the counter is in the 011

state may be delayed and then applied to the SET input of

flip-flop Y after the _ transition is completed. This

scheme would require a PULSE-AND gate with three level

inputs and a DELAY element. Second, the transition maps

may be examined in an attempt to find a transition pulse to

the SET input of Y. This approach would require only a

DELAY element, provided such a transition pulse could be

found. Carrying out the examination reveals that the required

transition pulse does indeed exist; it is a X.

Having ascertained that the additional a transition

of flip-flop Y can be easily taken into account, proceed

with the design of the scale-of-six counter by adding a

"_" to the 011 square of the map for Y (see Figure 15).

A second map, drawn to the right of the first, may be employed

to enter the compensating a transition. The derivation of

input equations is illustrated in Figure 15, and the counter

design is shown schematically in Figure 16.

The completed scale-of-six counter is an example of the

degree of simplicity which may sometimes be achieved through



46

X:

xy,
O0

O1

11

10

z

0 1

V.

xy
O0

®

Z:

z

0
xy _

O0 _la

Ol lla

11 Ito.

10,,--

1

_- TZ= P

Figure 15. Derivation of input equations
for scale-of-six counter with feedback.
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the use of asynchronous and feedback techniques.

The Asynchronous Synthesis Procedure

In order to be able to precisely describe the operation

and design of asynchronous counters in a concise manner,

it is necessary to introduce some additional notation and

terminology.

A set of transition maps arranged as shown in Figure 17

will be called a "map array." The particular map array

shown is for a three bit counter with flip-flops A, B, and

C. The column of maps on the extreme left is labelled in

the conventional manner and is used for the translation

of the counter state sequence table in the previously

defined manner.

The circled numeral below each map in Figure 17 will

be called the tttime index."

Transitions entered on the map array ._._11 be -1__

into four types:

Essential transition: a change of state which is

required by the counter state sequence table.

Expedient transition: a change of state which is
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Figure 17. A map array

for a three bit counter with flip-flops A, B, and C.
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employed in order to simplify an input equation.

Side-effect transition: an undesired change of

state which occurs as a result of the particular

expedient and feedback transition scheme used.

Feedback transition: a change of state which is

used to cancel the effect of an expedient or side-

effect transition.

The procedure for synthesizing an asynchronous counter

from a counter state sequence table consists of the following

steps:

1. Translate the counter state sequence table onto

the maps of time index 0 on a map array.

2. Examine each transition map to determine which

transitions to produce by means of the counter

input pulse and which to produce by means of the

output pulses of other flip-flops.

3. Consider the transitions which are to be produced

by the counter input pulse.

a. Add expedient transitions where profitable.

b. For each expedient transition added, enter a

corresponding feedback transition on the map
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0

of time index 1 in the same row.

c. Derive input equations for the essential and

expedient transitions under consideration.

d. Place a dot in the lower left corner of each

square containing a transition which has been

taken into account.

Consider the essential transitions which are to be

produced by the output pulses of other flip-flops.

a. Remove each of these transitions from its

position at time index 0, and re-enter it in

the corresponding square on the map in the

same row at time index one greater than the

output pulse which is to produce it.

b. Add expedient transitions where profitable.

c. For each expedient transition added, enter a

corresponding feedback transition on the map

of time index One greater in the same row.

d. Derive input equations for the essential and

expedient transitions under consideration.

e. Place a dot in the lower left corner of each

sqaure containing a transition which has been
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e

b,

taken into account.

Consider the feedback transitions which do not

have dots in the lower left corners of their

squares.

a. If any feedback transition does not have a

time index at least one greater than the

pulse which is to produce it, remove it and

re-enter it in the corresponding square on the

map in the same row at time index one greater

than the pulse which is to produce it.

Add expedient transitions where profitable.

c. For each expedient transition added, enter a

corresponding feedback transition on the map

of lowest time index greater than both the

expedient transition and the pulse which is

to produce the feedback transition.

d. Derive input equations for all transitions

which do not have dots in the lower left

corners of their squares.

e. Place a dot in the lower left corner of each

square containing a transition which has been
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taken into account.

6. For each transition which has a dot in the lower

left corner of its square:

a. Place a dot in the lower right corner of its

square.

b. Check ali input equations to determine if the

transition will cause any flip-flop to receive

an input pulse which has not been entered.

c. For each such input pulse:

i. Make the corresponding entry on the map

which is located in the row for the flip-

flop which receives the pulse and has a

time index one greater than the transition

which causes it.

ii. If the corresponding entry is a transition,

place a dot in the lower left corner of

ira square.

ill. If the corresponding entry is a transi-

tion, enter a feedback transition on the

map of time index one greater in the

same row.

7. If there are any squares which contain transitions
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but do not have dots in both lower corners,

then erase all the dots in the lower right corners

and repeat steps 5 and 6. The procedure termin-

ates when either (I) all squares containing

transitions have dots in both lower corners, in

which case the design is complete; or (2) the

particular input equation scheme being pursued is

found to be unusable, in which case the procedure

must be restarted and a different equation scheme

employed.

Step 7 of the synthesis procedure requires that the

procedure be terminated when the input equation scheme

being perBued is found to be unusable. An input equation

scheme -- that is, the plan of the equations derived in

steps 3 and 4 -- is unusable if after a number of iterations

of steps 5 and 6, the number of side-effect transitions

being generated does not decrease. This condition will

result, for example, when an unstable loop has been created.

Asynchronous Input Ecluation Recluirements

When the asynchronous synthesis procedure is employed,
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the input equations must satisfy the following requirements:

1. Every input equation must include either the counter

input pulse or a flip-flop output pulse.

Z. If a flip-flop output pulse is used to account for

a map entry in the input equations, the transition

which causes the pulse must be located in the

corresponding square on a map of time index less

than that of the entry.

3. If an input equation implies the use of a PULSE-AND

gate, the flip-flops whose output levels are used

as the level inputs to the gate must not change

state prior to the arrival of the pulse input to

the gate.

4. If, for a given initial state of the counter, a

flip-flop receives more than one input pulse, each

input pulse must have a minimum delay of 1 with

respect to the preceding pulse.

In the asynchronous synthesis procedure, the counter

state sequence table is first translated onto the map array.

1
T is the maximum length of time which must elapse

between t_vo successive input pulses in order for reliable

operation to result.
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The procedure and the input equation requirements then make

use of the correspondences between the entries on the map

array in order to derive the input equations. It is shown

in the Appendix that permutations of the digit positions

need not be investigated during the search for a simple

counter design.



IV. APPLICATION OF THE SYNTHESIS PROCEDURE

As a demonstration of the synthesis procedure, the

duodecimal counter defined in Table 5 will be designed. The

R-S-T flip-flop will be used.

In order to obtain a design which requires a minimum

amount of logical gating, the synthesis procedure will be

applied a number of times. First the procedure will be used

to arrive at a design which does not employ expedient and

feedback transitions. This design will be used as a basis

of evaluation for more sophisticated designs employing

feedback.

1. Translate the counter state sequence table onto the

maps of time index 0 on a map array.

Step 1 is carried out by applying the translation

rules to Table 5. The result is shown in Figure 18.

2. Examine each transition map to determine which

transitions to produce by means of the counter

input pulse and which to produce by means of the

output pulses of other flip-flops.

57
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TABLE 5

DUODECIMAL COUNTER

A B C D

0 0 0 0

0 0 0 1

0 0 1 0

0 1 1 0

0 I 1 1

0 1 0 0

1 0 0 0

1 0 0 1

1 0 I 0

1 1 1 0

1 1 I 1

I I 0 0

0 0 0 0
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The map for flip-flop A at time index 0 indicates that

A makes a transition when the counter is initially in either

the 0100 or 1100 state. The map for flip-flop B shows that

B makes _ transitions for both of these initial counter

states. Thus, if the _ pulses from B are used as the TRIGGER

input signal for flip-flop A, A will make a transition when

the counter is initially in the 0100 or 1100 state, as required.

The four transitions on the map for flip-flop B are

entered in squares for which neither the map for C nor the

map for D contain entries. The counter input pulse will be

used to take these transitions into account.

Examination of the map for flip-flop C at time index 0

discloses that C makes a transition when the counter is

initially in the 0001, 0111, 1111, or 1001 state. The transi-

tion map for D shows that flip-flop D makes a _ transition

each time the counter is initially in one of these states.

The transitions of fiip-fiop C can be produced, therefore,

by using the _ pulses from flip-flop D as TRIGGER pulses

for C.

The counter input pulse will be used to cause the transitions

of flip-flop D.
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3. Consider the transitions which are to be produced

by the counter input pulse.

a. Add expedient transitions where profitable.

b. For each expedient transition added, enter a

corresponding feedback transition on the map

of time index I in the same row.

c. Derive input equations for the essential and

expedient transitions under consideration.

d. Place a dot in the lower left corner of each

square containing a transition which has been

taken into account.

The transitions on the maps for flip-flop B and D will

be produced by means of the counter input pulse. No expedient

transitions will be used. The input equation for flip-

flop D is T D = (bc + bc).p. The input equation for flip-

flop B couldbe either T B --(bc +bc)-p or R B =c.p, S B = c.p.

The latter is chosen arbitrarily. The result of step 3 is

shown in Figure 19.

4. Consider the essential transitions which are to be

produced by the output pulses of other flip-flops.

a. Remove each of these transitions from its
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position at time index 0, and re-enter it in

the corresponding square on the map in the same

row at time index one greater than the output

pulse which is to produce it.

b. Add expedient transitions where profitable.

c. For each expedient transition added, enter a

corresponding feedback transition on the map

of time index one greater in the same row.

d. Derive input e_uations for the essential and

expedient transitions under consideration.

e. Place a dot in the lower left corner of each

square containing a transition which has been

taken into account.

The transitions of flip-flop A are to be produced by

pulses from flip-flop B. Since tl_e _ transitions of

B which cause these pulses are located at time index 0, the

transitions of A must be moved to the map for A at time index i.

The transitions for flip-flop C will be produced as a result

of the _ transitions of D at time index 0 and must therefore

be moved to time index 1. Because the transitions of flip-flop

A are entered in squares which correspond exactly to the squares



64

in which the _ transitions of B are entered, and because the

transitions of C are located in squares which exactly corres-

pond to the squares of the map for flip-flop D which contain

transitions, no expedient transitions are needed to

simplify the input equations for A and C. The input

equations are T A = _B

the result of step 4.

and T C = _D" Figure Z0 shows

Step 5 of the synthesis procedure deals with feedback

transitions. Since there are none in this design, step 5

is not applicable.

6. For each transition which has a dot in the lower left

corner of its square:

a. Place a dot in the lower right corner of its square.

b. Check all input equations to determine if the

transition will cause any flip-flop to receive

an input pulse which has not been entered.

C. _'u- ,_o._.._ _,._ J.,._.I..,_L. [.,_.,._,..,

i. Make the corresponding entry on the map

which is located in the row for the flip-

flop which receives the pulse and has a

time index one greater than the transition
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which causes it.

ii. If the corresponding entry is a transition,

place a dot in the lower left corner of its

square.

iii. If the corresponding entry is a transition,

enter a feedback transition on the map of

time index one greater in the same row.

A check of each transition against all of the input

equations reveals that there are no input pulses which have

not been entered. The result of step 6 is shown in Figure 21.

7. If there are any squares which contain transitions

but do not have dots in both lower corners, then

erase all the dots in the lower right corners and

repeat steps 5 and 6. The procedure terminates

when either (1) all squares containing transitions

have dots in both lower corners, in which case the

An examination of the map array in Figure 21 reveals

that all squares containing transitions have dots in both

lower corners. A dot in the lower left corner of a square

containing a transition indicates that the transition has
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been taken into account in the input equations. A dot in

the lower right corner indicates that the transition has

been checked against all input equations and that all input

pulses which the transition causes have been entered on'the

map array. Thus, the fact that all squares containing

transitions have dots in both lower corners means that the

map array presents an accurate account of the action of all

flip-flops. The design is therefore complete; the counter

is shown in Figure 22.

The synthesis procedure will now be employed a second

time in an effort to minimize the amount of gating needed.

1. Translate the counter state sequence table onto the

maps of time index 0 on a map array.

The result of step 1 is the same as for the first design,

shown in Figure 18.

2. Examine each transition map to determine which

transitions to produce by means of the counter

input pulse and which to produce by means of the

output pulses of other flip-flops.

It is desirable to produce the transitions of flip-flop

A by means of the _ transition pulses of flip-flop B, and the
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transitions of C by the _ pulses of D, as was done in the

first design, since this scheme does not require logical

gating.

The four blank squares on the map for flip-flop D at

time index 0 represent _tates of the counter for which D

is initially in the ZERO state and remains in the ZERO

state. If instead of this action, flip-flop D were to make

a transitions for these four initial counter states, the

map for D shows that D would make transitions for every

state in the counter state sequence table. In this circum-

stance, the transition of flip-flop D could be produced by

using the counter input pulse as the TRIGGER input signal

for D. No logical gating would be necessary.

If expedient _ transitions were added to the blank

squares on the map for D at time index 0, the _ transitions

of flip-flop B could be produced by using the a pulses of D

which occur when c = I et_ the or_.°_'_'s.......l.pu_ _lg._tl-'---1 ._LuB. _-t__.e

transitions of flip-flop B could be taken into account

by using the tt pulses of D which occur when c = 0 as the

RESET input pulses to B.

3. Consider the transitions which are to be produced
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by the counter input pulse.

a. Add expedient transitions where profitable.

b. For each expedient transition added, enter a

corresponding feedback transition on the map

of time index 1 in the same row.

c. Derive input equations for the essential and

expedient transitions under consideration.

d. Place a dot in the lower left corner of each

square containing a transition which has been

taken into account.

The essential transitions of flip-flop D are to be

produced by means of the counter input pulse. Four expedient

a transitions will be entered in the blank squares on the

map for D at time index 0. In order to cancel the effect

of these a transitions, four feedback _ transitions must

be entered in the corresponding squares on the map for D

of flip-flop D will be taken into account by means of the

counter input pulse -- T D = p. Figure 23 shows the result

of step 3.

4. Gonsider the essential transitions which are to be
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produced by the output pulses of other flip-flops.

a. Remove each of these transitions from its

position at time index 0, and re-enter it in the

corresponding square on the map in the same row

at time index one greater than the output pulse

which is to produce it.

b. Add expedient transitions where profitable.

c. For each expedient transition added, enter a

corresponding feedback transition on the map of

time index one greater in the same row.

d. Derive input equations for the essential and

expedient transit ions under consideration.

e. Place a dot in the lower left corner of each

square containing a transition which has been

taken into account.

The essential transitions of flip-flops A , B, and C

,..-111 i-, .... ,-1 .... A 1..,,, _1..,o _,',_"r',,'D',t" n_lQp_ nf flin-flnne The

four transitions of flip-flop C will be produced by the

pulses from D at time index 0 and must therefore be moved to

time index 1. The a pulses of flip-flop D at time index 0

will be used to cause the four transitions of B; thus, the
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latter have to be moved to time index I. The two transitions

of flip-flop A will be produced by means of the _ pulses of

B, which have been moved to time index l; accordingly, they

must be placed at time index 2. No expedient transitions

will be used. The input equations for flip-flops A, B, and C

are T A = _B; SB = C'aD' RB =c'uD; and T C = _C"

Figure 24 shows the result of step 4.

Because flip-flop C does not change state for those

initial states of the counter for which flip-flop D makes

a transitions, asynchronous input equation requirement 3

is satisfied in the case of SB = c-a D and IRB = c.a D.

5. Consider the feedback transitions which do not

have dots in the lower left corners of their squares.

a. If any feedback transition does not have a time

index at least one greater than the pulse

which is to produce it, remove it and re-enter

it in the corresponding square on the map in

the same row at time index one greater than

the pulse which is to produce it.

b. Add expedient transitions where profitable.

c. For each expedient transition added, enter a
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corresponding feedback transition on the map

of lowest time index greater than both the

expedient transition and the pulse which is

to produce the feedback transition.

d. Derive input equations for all transitions which

do not have dots in the lower left corners of

their squares.

e. Place a dot in the lower left corner of each

square containing a transition which has been

taken into account.

The four _ transitions on the map for D at time index 1

are the only feedback transitions. These four feedback tran-

sitions are located in squares corresponding to the squares

in which the transitions of flip-flop B are entered; hence,

they could be produced by using the transition pulses of B

as RESET pulses for D.

located at time index 1,

must be moved to time index 2.

are needed.

Since, the transitions of B are

the four feedback transitions of D

No expedient transitions

In order to satisfy asynchronous input equation require-

ment 4, the input pulses which produce the feedback transi-

tions of D have to be delayed. The input equation is
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R D = (a B ÷ _B)(_r). The fact that a B and _B are

delayed by the inherent delay of flip-flop B is not suffi-

cient to guarantee that requirement 4 will be satisfied,

since the internal delay of B may be less than "r. Figure

25 shows the result of step 5.

6. For each transition which has a dot in the lower

left corner of its square:

a. Place a dot in the lower right corner of its

square.

b. Check a11 input equations to determine if the

transition will cause any flip-flop to receive

an input pulse which has not been entered.

c. For each such input pulse:

i. Make the corresponding entry on the map

which is located in the row for the flip-flop

which receives the pulse and has a time

index one greater than the transition

which causes it.

ii. If the corresponding entry is a transition,

place a dot in the lower left corner of

its square.
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iii. If the corresponding entry is a transi-

tion, enter a feedback transition on the

map of time index one greater in the same

rOW.

All of the transitions shown in Figure 75 have dots

in their lower left corners, indicating that they have been

taken into account in the input equations. A check of all

transitions against the input equations reveals that only

the four _ transitions of flip-flop D at time index 2

cause input pulses which have not been entered. These four

cause flip-flop C to receive four TRIGGER input pulses.

The two feedback transitions which occur when flip-flop C

is initially in the ZERO state cause C to make a transitions;

the two which occur when C is initially in the ONE state

cause _ transitions. The four of flip-flop C

are entered on the map for C at time index 3 (see Figure 26).

Dots are placed in the !o;-;er !eft corner of the sq_!ares in

which these four entries are made, indicating that these

entires are taken into account in the input equations. Four

corresponding feedback transitions are entered on the map

for flip-flop C at time index 4 in order to cancel the effect

of these side-effect transitions.
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7. If there are any squares which contain transi-

tions but do not have dots in both lower corners,

then erase all the dots in the lower right corners

and repeat steps 5 and 6. The procedure termin-

ates when either (1) all squares containing

transitions have dots in both lower corners, in

which case the design is complete; or (2) the

particular input equation scheme being pursued is

found to be unusable, in which case the procedure

must be restarted and a different equation scheme

employed.

A check of the map array in Figure 26 reveals that

there are some squares which contain transitions but do not

have dots in both lower corners. The four side-effect

transitions on the map for G at time index 3 do not have

dots in the lower right corners of their squares, indicating

that these transitions have not been checked against the input

equations. The four feedback transitions on the map for C

at time index 4 do not have any dots in their squares; this

implies that these transitions have neither been taken into

account in the input equations nor been checked against the
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input equations. All the dots in the lower right corners of

squares must therefore be erased, and step 5 has to be repeated.

Step 5 of the procedure requires that all feedback

transitions be accounted for in the input equations. The

feedback transitions on the map for flip-flop C at time index

4 are the only feedback transitions which do not have dots in

the lower left corners of their squares and are thus the only

ones which have not been taken into account. The two feed-

back _ transitions of C at time index 4 will be produced

by using the two _ transitions of flip-flop B at time index

I as RESET signals. The two feedback a transitions of flip-

flop C at time index 4 will be produced by using the two a

transitions of B at time index 1 as SET signals.

In order to satisfy asynchronous input equation require-

ment 4, the input pulses which are used to produce the feed-

back transitions on the map for C at time index 4 have to be

cause the side-effect transitions at time index 3. The side-

effect transitions of C at time index 3 are caused by the

feedback transitions on the map for D at time index 2, which

are in turn caused, after a delay of _-, by the transitions
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of B at time index 1. The total elapsed time from the

occurance of an output pulse at flip-flop B to the arrival

of an input pulse at flip-flop C is thus equal to the delay ,r

between the output of B and the input of D, plus the

propagation time ,r t 1 between the input and output of D.

The output pulses of B which are to produce the feedback

transitions of C at time index 4 have to be delayed by this

length of time, _ + "1"t plus the delay specified by require-

ment 4, "r. The input equations are S C = aB(2-r + ,r t )

and R C = _B(2-r + T'). Figure 27 shows the result of this

step.

The reasoning of the preceding paragraph is an example

of the analysis which is used to ensure satisfaction of asyn-

chronous input equation requirement 4. The general approach

is the following. When one input signal must be delayed

with respect to another, the two signals are first traced

back to a comr_on source. This can be done, since

the counter input pulse is the source which initiates all

action. The total time along each path is then calculated,

l_rt is the maximum length of time which elapses

between the arrival of a pulse at the input of a flip-flop

and the appearance of a transition pulse at the output.
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and an additional delay is added to the path of the signal

which is to be delayed, if necessary.

Step 6 of the procedure requires that each transition

with a dot in the lower left corner of its cell be checked

against all input equations. This must be done in order to

insure that the map array present an accurate account of aU

input pulses and transitions.

Figure 27 shows that every transition has a dot in the

lower left corner of its square; each must be checked

against the input equations. Checking all transitions

reveals that all necessary map entries have been made.

(A dot in the lower right corner of a square containing a

transition marks that transition as having been checked).

The result of this step is shown in Figure 28.

Because aU of the squares containing transitions have

dots in both lower corners (see Figure 28), the design is

complete by virtue of step 7.

A comparison of the first design of the duodecimal

counter, shown in Figure Z2, and the second design, Figure zg,

discloses that three gates have been eliminated at a cost of

adding three delay elements. This change in the design was
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made possible by having flip-flop D undergo expedient transi -

tions. It is therefore logical to investigate the possi-

bility of using expedient transitions to reduce or eliminate

the input gating to flip-flop B. Toward this end, the

synthesis procedure will be employed a third time.

For the third design of the duodecimal counter, the first

three steps will be executed exactly as they were in the

second design; the result is shown in Figure 23.

4. Consider the essential transitions which are to be

produced by the output pulses of other flip-flops.

a. Remove each of these transitions from its

position at time index 0, and re-enter it in

the corresponding square on the map in the

same row at time index one greater than the

output pulse which is to produce it.

b. Add expedient transitions where profitable.

c. For each expedient transition added, enter a

corresponding feedback transition on the map

of time index one greater in the same row.

d. Derive input equations for the essential and

expedient transitions under consideration.
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e. Place a dot in the lower left corner of each

square containing a transition which has been

taken into account.

In Figure 23, the transitions of flip-flop C are located

in squares corresponding to those in which the _ transitions

of flip-flop D at time index 0 are entered. The transitions

of C can therefore be produced by using the _ pulses of D

as the TRIGGER input signal -- T C = _D" The transitions

of C have to be moved to time index 1.

The transitions of flip-flop B are entered in squares

associated with initial states for which flip-flop D makes

a transitions. If expedient transitions are added to the

0000, 0110, 1110, and 1000 squares on the map for B, the

essential and expedient transitions of flip:flop B can be

produced by using the a pulses of flip-flop D as TRIGGER

pulses -- T B = a D. These essential and expedient transi-

tions have to be located at time index i. Because flip-flop

B is initially in the ZERO state for the 0000 and 1000

squares, the expedient transitions entered there are a

• transitions. Flip-flop B is initially in the ONE state for

the 01i0 and 1110 squares; the entries are therefore
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transitions (see Figure 30). In order to cancel the effect

of the expedient transitions, feedback transitions must be

entered on the map for B at time index 2. Figure 30 shows

that two _ feedback transitions have been placed in the

squares corresponding to the squares which contain the

expedient transitions at time index I. Two a feedback

transitions have been entered at positions corresponding to

the _ expedient transitions.

Figure 23 shows that the two transitions of flip-flop A

'correspond to the two _ transitions of flip-flop B. In the

first and second designs, this fact was used to write T A = OB

as the input equation for flip-flop A. In this third design,

however, flip-flop B undergoes two expedient _ transitions

and two feedback _ transitions (see Figure 30) in addition

to the two essential _ transitions shown on the map array of

Figure 23. Thus, in order to employ the input equation

TA = _B in this third design, and thereby avoid the use of

logical gating to produce the transitions of A, expedient

transitions are added to the maps for A. In Figure 30, the

transitions in the 0100 and 1100 squares of the map for A

at time index 2 are the essential transitions of flip-flop A;
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those in the 01 I0 and 111O squares at time index 2 and the

O000 and I000 squares at time index 3 are expedient transitions.

(If the input equation T A = OB were used, and these four

expedient transitions were not entered at this point in the

procedure, step 6 would require that they be entered at that

time). Four feedback transitions must be employed to cancel

the effect of the expedient transitions; these are entered

in the 0110 and lllO squares at time index 3 and the 0000

and 1900 squares at time index 4.

5. Consider the feedback transitions which do not have

dots in the lower left corners of their squares.

a. If any feedback transition does not have a time

index at least one greater than the pulse which

is to produce it, remove it and re-enter it in

the corresponding square on the map in the same

row at time index one greater than the pulse

which is to produce it.

b. Add expedient transitions where profitable.

c. For each expedient transition added, enter a

corresponding feedback transition on the map

of lowest time index greater than both the
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expedient transition and the pulse which is

to produce the feedback transition.

d. Derive input equations for all transitions

which do not have dots in the lower left

corners of their squares.

e. Place a dot in the lower left corner of each

square containing a transition which has been

taken into account.

The four _ feedback transitions on the map for flip-

flop D at time index I will be produced by using the counter

input pulse -- R D = (( bc + bc ).p)('r). The dash entries

in the 0011, 0101, 1101, and 1011 squares (see Figure 31)

have been used to simplify the input expression. Note that

in order to satisfy asynchronous input equation requirement 3,

the RESET signal must be delayed afte.__.__rthe PULSE-AND gate;

the counter input pulse must no__fitbe delayed before it is

applied to the gate.

The two feedback _ transitions of flip-flop B, located

on the map at time index 2, will be accounted for by R B :

(bcd.p)(T +T'). The delay oft +T' is necessary because

the input pulses which cause the expedient transitions of B
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at time index 1, that is, the a pulses from flip-flop D,

are delayed by _.t with respect to the counter input pulse_

the pulses which produce the feedback transitions at time

index 2 must be delayed by an additional length of time _r.

The two feedback a transitions on the map for flip-flop B

at time index 2 will be produced by the SET signal

S B = (bcd.p)(_+_').

The two feedback transitions of flip-flop A entered in

the 0110 and 1110 squares at time index 3 can be produced

by means of the TRIGGER signal T A = (b cd.p)(_ + Z 'r' ).

The delay of T + 2"r' is determined by the following reason-

ing. The pulses which produce the feedback transitions at

time index 3 must be delayed by at least T from the pulses

which cause the expedient transitions at time index 2. The

expedient transitions at time index 2 are produced by the

output pulses from flip-flop B at time index 1. The

pulses of flip-flop B are delayed by at most T l with respect

to the input signals which cause them -- the a pulses from

flip-flop D. The a pulses of D are delayed by at most "rt

with respect to the counter input pulses. Thus, the pulses

which produce the feedback transitions at time index 3 must
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be delayed a minimum of T + 2_ t with respect to the counter

input pulse.

The two feedback transitions of flip-flop A at time

index 4 will be produced by means of the TRIGGER input signal

T A -- (bcd.p)(Zr*2_. The delay is derived as follows.

The pulses which produce the feedback transitions at time

index 4 must be delayed by at least _" from the pulses which

cause the expedient transitions at time index 3. These

expedient transitions are caused by the _ pulses from flip,

flop B at time index 2, which have a delay of at most 7"l

-with respect to the input pulses which cause them. The

transitions of B at time index 2 are produced by the RESET

signal R]3 = (bcd'p)(T +T'). Thus, the total delay is

T + T_+ (_" +r') = z_" +Z_ -I

Because the term b cd-p appears in both the RESET equa-

tion for flip-flop ]3 and the TRIGGER equation for flip-flop A,

the same gate can be used to implement both equations. ^1__

only one gate is needed for the term b c d.p, which appears

in the SET equation for flip-flop B and the TRIGGER equation

for flip-flop A.

6. For each transition which has a dot in the lower
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left corner of its square:

a. Place a dot in the lower right corner of its

square.

b. Check all input equations to determine if the

transitions will cause any flip-flop to receive

an input pulse which has not been entered.

c. For each such input pulse:

i. Make the corresponding entry on the map

which is located in the row for the flip-

flop which receives the pulse and has a

time index one greater than the transi-

tion which causes it.

ii. If the corresponding entry is a transition,

place a dot in the lower left corner of

its square.

iii. If the corresponding entry is a transition,

enter a feedback transition on the recap of

time index one greater in the same row.

All of the transitions entered on the map array in

Figure 31 have dots in the lower left corners of their

squares. A check of each transition against the input
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equations discloses that only the four _ transitions of

flip-flop D at time index 1 cause the input pulses which have not

been entered. These four _ transitions cause flip-flop C

to receive four TRIGGER input pulses (see Figure 32) at time

index 2. The two feedback transitions of flip-flop D which

occur when flip-flop C is in the ZERO state cause C to make

a transitions; the two which occur when C is in the ONE

state cause f3 transitions. Dots are placed in the lower

left corners of the squares of these side-effect transitions,

indicating that they are account ed for in the input equations.

Four corresponding feedback transitions are entered on the map

for flip'flop C at time index 3 in order to cancel the effect

of the side-effect transitions.

7. If there are any squares which contain transitions

but do not have dots in both lower corners, then

erase all the dots in the lower right corners and

repeat steps 5 and 6 ....

An examination of the map array in Figure 32 reveals

that the squares containing the side-effect and feedback

transitions of flip-flop C do not have dots in both lower

corners. Thus, step 5 must be repeated.
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Step 5 of the procedure requires that input equations

be derived for all feedback transitions. The four feedback

transitions on the map for flip-flop C at time index 3

(Figure 3Z) are the only transitions which do not have dots

in the lower left corners of their squaresl these are the

only transitions which are not accounted for in the input

equations.

The two _ transitions of flip-flop C at time index 3

will be produced by using the _ pulses of flip-flop B at

time index 1 as RESET pulses. Expedient _ transitions are

entered in the 0110 and 1110 squares on the map for C at

time index 3 (see Figure 33). These entries are made in

order to eliminate the need for logical gating to select

only the _ pulses entered in the 0100 and !100 squares as

RESET pulses. Adding the two expedient _ transitions makes

it necessary to add two feedback a transitions in the

0110 and 1110 squares at time index 4.

The input equation for the _ transitions at time

index 3 isR C = OB(Z_F +Tl). The delay of 2T +q-lis

determined as follows. The side-effect transitions of C at

time index Z are caused by the _ pulses from D at time
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index I. These _ pulses are delayed at most _'twith respect to

the input signal which causes them -- R D = ((bc + b c) p) (q')

-- which is delayed by 7- with respect to the counter input

pulse. Thus, the pulses which cause the side-effect transi-

tions of C at time index 2 are delayed by a total length of

time 7" +Tlwith respect to the counter input pulse. The

signal which produces the _ transitions at time index 3

must be delayed by an additional length of time 7" in order

to satisfy asynchronous input equation requirement 4.

The two a transitions of flip-flop C at time index 3

will be produced by using the a pulses of flip-flop B at

time index I as SET pulses. Expedient a transitions will

be entered in the 0000 and I000 squares of the map for C at

time index 3 in order to avoid the Use of logical gating at

the SET input of flip-flop C. Two feedback _ transitions

must be entered in the 0000 and I000 squares at time index 4.

The input equation for the a transitions of flip-flop C

at time index 3 is S C = aB(Z7" +7"I). The amount of delay

required is the same as that for the RESET input of flip-flop C.

Part d of step 5 requires that input equations be derived

for the transitions located on the map for C at time index 4.
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Note that the four transitions of C at time index 4 are

located in squares corresponding to those which contain the

four transitions of B at time index 2. The two _ transitions

of flip-fl0p B at time index 2 will cause the two _ transi-

tions of flip-flop C at time index 4 by means of the RESET

input R C -- _B(ZT +T I). The two a transitions of B at

time index 2 will produce the a transitions of C at time

index 4 by means of the SET input S C -- _B(2 T +7" ). Thus,

all transitions on the map array of Figure 33 are accounted

for in the equations.

Step 6 of the procedure requires that all transitions

with dots in the lower left corners of their squares be checked

against the input equations. A check of the transitions on

the map array in Figure 33 shows that all the input pulses

implied by the input equations have been taken into account.

The result of step 6 is shown in Figure 34.

All of the squares containing transitions (Figure 34)

have dots in both lower corners; step 7 states that the

design is therefore complete. The third design of the

duodecimal counter is shown in Figure 35.

The repeated application of the asynchronous synthesis
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procedure to the design of the duodecimal counter exempli-

fies an approach to the problem of synthesizing counters

with a minimum amount of logical gating. First, the

procedure was used to arrive at a design which did not

employ expedient and feedback transitions. Such a design

was needed as a basis of evaluation for the more sophisti-

cated designs to be attempted. The synthesis procedure

was then applied a second time, and a conservative number

of expedient transitions were introduced in an attempt to

minimize logical gating. Having found that the expedient

transitions used in the second design resulted in the

simplification of the input equation set, the procedure was

employed a third time. In the third design, a number of

expedient transitions were intorduced in addition to those

used in the second design. The result was an increase in

complexity compared to the initial design.
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V. CONCLUSIONS

The logical design of single input sequential circuits,

or counters, is commonly carried out by first applying the

well developed synchronous design procedures and then reduc-

ing the amount of hardware by heuristic means. The latter

step often leads to the utilization of asynchronous tech-

nique s.

A systematic method has been presented which, starting

with a specified counting sequence, leads to an asynchronous

implementation of the counter.

In the method that has been presented, the logical

operation of a flip-flop is characterized in terms of the

change of state which occurs when the flip-flop is in a given

initial state and is subjected to a given input signal. This

is in contrast to the conventional approach of describing

the logical operation of a flip-flop in terms of the next

state assumed by the flip-flop as a function of initial

state and input signal.

Although the difference between characterizing a flip-flop

108
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in terms of state transitions and describing it in terms

of its next state may appear slight, the former has distinct

advantages. The reason is that using the present state and

next state of a flip-flop to describe its logical operation

naturally leads to the use of clock pulse gated output levels

for the transmission of information within a counter. The

characterization in terms of state transitions, however,

enables the use of a second source of information and a

second information carrier. In addition to flip-flop output

levels, use is made of the level changes as a source of

information. In addition to gated output levels, pulses

dervied from the output level changes serve as information

carriers.

The characterization of the logical action of a flip-flop

in terms of state transition is one of the two basic concepts

in the transitions map method presented. The second funda-

mental concept is the display of all logical information

in transition map form. A single transition map provides

sufficient information for the derivation of synchronous

input equations for a single flip-flop. A single set of

transition maps -- one for each flip-flop -- displays sufficient
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information for the derivation of asynchronous input

equations for a counter without logical feedback. A map

array, with its additional dimension corresponding to time,

displays sufficient information for the synthesis of asyn-

chronous counters employing logical feedback.



APPENDIX

The fact that permutations of the digit positions in the

counter state sequence table need not be investigated during the

search for a simple counter design can be demonstrated by proving

that

(I) if, for a given arrangement of digit positions, a single entry

on one transition map and a single entry on a second transi-

tion map are located in squares corresponding to the same

initial state, then the same entries will be located in

corresponding squares for any permutation of the digit

positions;

(Z) if, for any given arrangement of digit positions, a group of

adjacent entries on one transition map and an equal number

of adjacent entries on a second transition map are located in

squares corresponding to the same initial states, then the

same groups will be located in corresponding adjacent squares

for any permutation of the digit positions; and

(3) if the digit positions are rearranged, the number of

occurrences of each type of entry on each transition map

111
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remains constant.

The proof of these three statements will demorstrate that every

map entry correspondence--that isp the correspondence that

exists between map entries which are located in squares corres-

ponding to the same initial state of the counter--is unchanged by

permutation of the digit positions. The proof will also indicate

that no new map entries are created by rearranging the digit

positions. It follows that permuting the digit positions creates no

new map entry correspondences which might aid in the simplifi-

cation of the counter.

In the following proofs, let XIX 2. . . X denote a par-n

ticular digit position arrangement for a counter state

sequence table which defines the operation of an n bit counter.

th
For each X , the m column of the sequence table, there is

In

an associated flip-flop and an associated transition map.

XlX Z...x andx_x_...x' range
2 nLet oYeF all possible values

n n

of X1X 2...X --x m, x t c (0, 1_ for m : 1, 2 ..... n. Forn m

every value XlX 2...xnandxlx2 ., t ..Xn' there is an associated

square on each transition map.

Let the operation of replacing one arrangement of the

u • •

digits X1X 2. .. Xn by a second arrangement XilXi2 X.ln be
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denotedbyP (X1X 2...Xn) = XilXiz...X i .n

P replaces every value XlX Z. . . Xn by P (XlX 2. . . Xn) = XilXiz.

Let the permutation be such that the jth digit in the original

arrangement is moved to the k th position in the permuted

The permutation

• .X i *

n

order--Xj = Xik. Then the value of the jth digit of a

particular XlX2... Xn is equal to the value of the kth digit

inP (XlX2...Xn) = XilXiz...Xin, that is, xj = Xik.
th

Further assume that under P, the p digit X is moved to the
P

th
q position--X = X i . Thus, the valuex i inx x ...x.

P q q il i Z 1n

is equal to the value x inXlxz...x n.P

' e_,.., be particular map entries, includingLet e I , e l, e Z,

the possibility of a blank- _ o' . { (blank), O, 1, a _, --}-_i_i -

for i = 1, Z, ....

Proof Statement (1)

Assume that the XlX 2. .. Xn square of the transition

map for a particular flip-flop Xj contains the entry e I ,

and that the XlX 2. .. Xn square of the transition map for

flip-flop X contains the entry e 2.
P

Two cases must be examined:

(a) If the state XlX 2. .. Xn does not appear in the original

= "-" and e 2 = " " Since the statesequence table, then e I -.
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XlX 2. . . Xn does not appear in the original sequence table, and

since the permutation P is a one-to-one function, the state

P {XlXz...Xn) = x x ...x i does not appear in the rearranged
il iz n

sequence table• It follows that the x x ... x i squares on
il iz n

the maps for Xik and X i will each contain the entry "-. i,
q

Now since "-" -- e I and "-'' -- e Z, the correspondence between

the entry e I on the map for Xj = Xik and the entry e Z on the

map for X = X i has been preserved under the permutation P.P
q

(b) If the state XlX Z. . .Xn is listed in the original sequence

table, then the entries e I and e Z are determined by the next

state in the sequence• Let XlXz•'' . .X'n be the next state.

Entry e I in the XlX Z...x square on the map for X. is deter-n j

mined by xj and x!.j Entry e Z in the XlX Z. . . Xn square on the

map for X is determined by x and x'. Under the permuta-
P P P

! ! --
e • • • •tion p, p (xlXZ... Xn) - xilXiz Xinand P (XlX2. xn)

, , .Xln• e3 v _,Iz x. square on
x. x.. The entry in .t_

i 1 i Z 11 1n

the map for Xik is determined by x.lk and x!11<, and the entry

e 4inthe x x .... x. square on the map for X. is deter-
i 1 1Z 1 1n q

' . Because x = xj andx_= x;,mined by x i and x i ik
q q

however, e 3 = e I . Because x. = x andx_ = x', e 4 = e Z.1 p 1 p
q q

Thus the correspondence between the entry e I on the map for
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Xj = Xik and the entry eZ on the map for X = X.P _q

preserved under the permutation P.

has been

Proof of Statement (Z)

Assume that on the maps for the original counter state

sequence table, the XlXz...Xn square and the Xl'X'...Z X'n square

are adjacent in the Karnaugh map sense, that is, XlX 2. • • x n

and XlX2.' '.. X'n differ in the value of exactly one digit.

Assume that the difference is in the value of the jth digit--

x = x ' for all m except J. Since the permutation merely
rll rn

rearranges the digit order and does not change the individual

digit values, it follows that xi = x_ for all m except k.
m m

Then because x x ...x. andx', x_ .. ' differ in exactly
i 1 i 2 1 1 12 "xin 1 n

one digit value, the associated squares must be adjacent

(in the Karnaugh map sense) on the maps for the rearranged

counter table.

Now assume that on one transition map, the XlX 2. . .x n

square contains the entry e I , and the adjacent XlX2.' ' . . X'n

' Assume that on a second
square contains the entry e 1 .

transition map, e Z is entered in the XlX Z. .. Xn square, and

e_ is entered in the XlXZ.' ' ..Xn' square. The proof of state-

ment (1) ensures that the individual correspondences between
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' and I will be preserved under thee I and e 2 and between e I e z

permutation P. The preceding paragraph indicates that the

adjacency of the two squares will be maintained by P. It

follows that if a pair of adjacent entries on one transition

map and a pair of adjacent entries on a second map are located

in squares corresponding to the same initial states, this

correspondence is preserved by the permutation. Since this

conclusion can be applied to any adjacent pair of entries on

a map, it can be applied successively to each adjacent pair

of a group of entries. Thus, if, for a given arrangement

of digit positions, a group of adjacent entries on one transition

map and an equal number of adjacent e_tries on a second map

are located in squares corresponding to the same initial

states, this correspondence between the two groups will be

preserved by the permutation.

Proof Statement (3)

The proof of statement (3) follows from the proof of

statement (1). There it was demonstrated that if e is
1

entered in the XlX z...xn square of the map for Xj, then

e I will be entered in the P (XlX Z. . . Xn) = XilXiz X.ln square

on the map for Xik = X..j Since this fact is true for every
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type of entry and every square, it follows that the number

of occurrences of each entry on each map remains constant

under the permutation.
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